УДК 550.42:552.54:551.762

Sr-ХЕМОСТРАТИГРАФИЯ, δ¹³С И δ¹⁸О ОТЛОЖЕНИЙ КРЫМСКОЙ КАРБОНАТНОЙ ПЛАТФОРМЫ (ПОЗДНЯЯ ЮРА, СЕВЕРНЫЙ ПЕРИТЕТИС)

© 2017 г. С. В. Рудько, А. Б. Кузнецов*, Б. Г. Покровский

Геологический институт РАН 119017 Москва, Пыжевский пер., 7 *Институт геологии и геохронологии докембрия РАН 199034 Санкт-Петербург, наб. Макарова, 2 E-mail: svrudko@gmail.com Поступила в редакцию 10.02.2016 г.

Изучен изотопный состав Sr, C и O в верхнеюрских карбонатных отложениях Байдарской котловины и плато Демерджи Горного Крыма, представленных различными фациями карбонатной платформы северной активной окраины Тетиса. Величина ⁸⁷Sr/⁸⁶Sr в них варьирует от 0.70699 до 0.70728. В результате Sr-хемостратиграфической корреляции возраст массивных и слоистых известняков западной части Ай-Петринской и Байдарской яйл определен как соответствующий позднему кимериджу – раннему титону, а флишоидов Байдарской котловины – позднему титону – раннему берриасу. Обосновано субсинхронное формирование известняковых брекчий Байдарской котловины и плато Демерджи в позднем титоне – раннем берриасе. Составлен сводный разрез верхнеюрских отложений по данным Sr-хемостратиграфии.

Установлено, что значения δ^{18} О в изученных карбонатных отложениях варьируют от -2.9 до 1.3%(V-PDB), при этом мелководные отложения внутренней части и бровки Крымской карбонатной платформы обеднены 18 O (-2.9 - +0.1%) по сравнению с отложениями ее склона и подножья (-0.5 - +1.3%). Показано, что значения δ^{13} C не зависят от фациальных особенностей и уменьшаются (от 3-3.5% до 1-1.5%) по мере омоложения возраста карбонатных отложений, что соответствует общему тренду позднеюрского времени. Значения δ^{13} C, полученные для Крымской карбонатной платформы, оказались выше (на 0.5-1%) значений, характерных для глубоководных морских обстановок западной окраины Тетиса. Предполагается, что эти различия обусловлены особенностями водной циркуляции и повышенной биопродуктивностью морских акваторий Северного Перитетиса.

DOI: 10.7868/S0024497X17060064

Глобальное потепление климата и высокое стояние уровня моря, обусловленное развитием крупнейшей морской трансгрессии, привели к накоплению значительного объема карбонатных осадков в позднеюрское время. Обширные области стабильного карбонатонакопления (карбонатные платформы), подобные современной Багамской банке или шельфу Флориды [Tucker, Wright, 1990], существовали в низких широтах, располагаясь вдоль периферии океана Тетис [Leinfelder et al., 2002]. Масштабное карбонатонакопление, также как и захоронение значительной массы органического вещества, существенно повлияли на геохимический шикл углерода в позднеюрское время [Donnadieu et al., 2011]. Осадки карбонатных платформ являются важными свидетельствами позднеюрской палеогеографической и палеоклиматической специфики, однако их изучение по ряду причин существенно затруднено. Во-первых, мелководные осадки карбонатных платформ часто лишены остатков руководящей аммонитовой фауны, что ограничивает возможности корреляции отложений и обоснование их возраста. Во-вторых, многие карбонатные толщи, находясь в пределах подвижного Альпийского пояса, претерпели многостадийные тектонические деформации, в связи с чем последовательность отложений в них часто бывает нарушена, а породы – интенсивно преобразованы. В этих случаях методы хемостратиграфии с привлечением изотопного состава Sr и С позволяют оценивать возраст и осуществлять корреляцию верхнеюрских разрезов. В частности, по изменениям изотопного состава Sr в раковинах двустворчатых моллюсков было выполнено детальное стратиграфическое расчленение

Рис. 1. Схема расположения районов изучения верхнеюрских отложений на Крымском полуострове. 1–2 – зоны выходов верхнеюрских карбонатных отложений: 1 – мелководных, 2 – глубоководных; 3 – Байдарская котловина (*a*) и плато Демерджи (б); 4 – стратотип яйлинской свиты в районе Ай-Петринской яйлы.

карбонатных отложений Лузитанского бассейна в Португалии [Schneider et al., 2009] и острова Борнео [Kakizaki et al., 2013]. На примере плато Демерджи (ПД) в Горном Крыму нами была продемонстрирована возможность использования валовых образцов известняка для Sr-хемостратиграфической корреляции (SIS) юрских отложений.

Вариации δ^{13} С в течение поздней юры хорошо изучены, в первую очередь, по данным изотопного состава ростров белемнитов суббореальных [Nunn, Price, 2010; Wierzbowski et al., 2013] и бореальных [Žák et al., 2012; Dzyuba et al., 2013] регионов. Изотопные данные по δ^{13} С для Тетической области были получены, в основном по пробам карбонатных пород [Padden et al., 2002; Žák et al., 2012] и характеризуют пока только западную пассивную окраину Тетиса. Для пополнения изотопной информации и расширения возможностей детальной корреляции в пределах верхнеюрского стратиграфического интервала, необходимо систематическое изучение δ^{13} С в карбонатных осадках других позднеюрских окраинных морей Тетиса.

Верхнеюрские осадочные комплексы Горного Крыма формировались на северной активной окраине океана Тетис – в Северном Перитетисе [Zonenshain, Le Pichon, 1986], располагавшемся между 20 и 40° северной широты [Meijers et al., 2010]. После накопления осадочные толщи подверглись позднекиммерийским деформациям в раннем мелу, а затем альпийским деформациям в эоцене-олигоцене [Okay, Nikishin, 2015]. В результате сформировавшиеся здесь отложения карбонатной платформы характеризуются весьма сложной структурой [Милеев и др., 2006]. Предполагается существование в них скрытых надвигов, с многократным повторением в разрезе одновозрастных карбонатных толщ, и сдвиговых деформаций, объясняющих резкие "незакономерные" фациальные переходы. Целью настояшей работы является продолжение хемостратиграфического исследования верхнеюрских толщ Горного Крыма [Рудько и др., 2014] для получения изотопно-геохимической характеристики карбонатных отложений более широкого стратиграфического и фациального диапазонов. Новым объектом исследований являются толщи верхнеюрских пород. слагающих южный борт Байдарской котловины (БК) в западной части Крымских Гор (рис. 1). Они представлены мощной последовательностью, образованной массивными рифовыми известняками, известняковыми брекчиями склона карбонатной платформы и глинисто-карбонатными гемипелагическими фациями.

В районах БК и ПД впервые изучен изотопный состав С и О в известняках и раковинах моллюсков, в связи с этим получены новые данные об обстановках осадконакопления и постседиментационных преобразованиях отложений Крымской карбонатной платформы. На основе SIS-корреляции изученных разрезов построена кривая временных вариаций δ^{13} С, она была сопоставлена с аналогичными кривыми для западной окраины океана Тетис [Padden et al., 2002; Coimbra et al., 2009; Michalik et al., 2009; Žák et al., 2012].

ГЕОЛОГИЧЕСКОЕ СТРОЕНИЕ И РЕГИОНАЛЬНАЯ СТРАТИГРАФИЯ

Верхнеюрские карбонатно-терригенные отложения в юго-западной части Крымских гор с несогласием налегают на позднетриасовый – нижнеюрский флиш (таврическая серия), среднеюрские вулканические комплексы и флишоиды келловея [Успенская, 1969]. Сверху они перекрыты нижнемеловыми комплексами без видимого стратиграфического и структурного несогласия. Вслед за Ю.С. Бискэ [1997], в строении верхнеюрских отложений южного борта БК мы выделяем снизу вверх три толщи (рис. 2): I-b – светло-серые массивные и слоистые известняки (не менее 400 м), II-b – флишоиды, деформированные и смятые в складки (мощность не определена), III-b – известняковые брекчии (не менее 300 м). Выделенные толщи, как правило, разделены структурными несогласиями. однако в разрезе оврага Деймен-Дере нам удалось наблюдать переход толщи II-b в толщу III-b в виде чередования грубозернистых обломочных известняков с глинистыми мергелями, что подтверждает предположение о фациальном замещении

известняковых брекчий флишоидами [Архипов, 1958].

Существуют различные представления о возрасте и принципах расчленения верхнеюрских отложений южного борта БК.

Толща І-ь относится к яйлинской свите, которая традиционно рассматривалась в объеме среднего оксфорда – нижнего кимериджа [Успенская 1969; Пермяков и др., 1991]. Стратотип свиты находится восточнее исследованных нами разрезов. на хребте Иограф в районе Ялтинской яйлы. В стратотипическом разрезе для яйлинской свиты по фораминиферам был определен более молодой – кимеридж-берриасский возраст [Krajewski, Olszewska, 2007]. Сведения о находках руководящей фауны в известняках толши I-b. развитой на запалной оконечности Ай-Петринской и Байдарской яйл, отсутствуют. Возраст известняков, слагающих яйлы юго-западной части Горного Крыма, обычно определяется по взаимоотношениям с другими горизонтами [Успенская, 1969]. На основании представлений о надвиговом строении верхнеюрских отложений [Бискэ, 1997; Милеев и др., 2006] он может

Рис. 2. Геологическое строение района Байдарской котловины (по [Бискэ, 1997] с изменениями) и положение изученных разрезов.

1 – предполагаемые надвиги, несогласные границы толщ; 2 – вертикальные разрывные нарушения; 3 – отложения таврической серии (T₃-J₁); 4 – нерасчлененные среднеюрские отложения; 5–9 – верхнеюрские отложения: 5 – толща II-b, 6 – толща II-b, 7 – толща III-b, 8 – толща верхнеюрских-нижнемеловых конгломератов, 9 – известняки свиты кизил, нерасчлененные верхнеюрские отложения; 10 – свита эли, нерасчлененные верхнеюрские-нижнемеловые отложения; 11 – нижнемеловые глины (K₁,vl-gt); 12 – положение изученных разрезов.

Номера разрезов на карте соответствуют следующим названиям, приведенным в тексте: 1 – Мердвен-Кая, 2 – Мшатка, 3 – Донгуз-Орун, 4 – Биюк-Синор, 5 – Кутур-Кая.

61

быть оценен только как соответствующий позднеюрскому временному интервалу в целом.

Толща II-b объединяет флишоиды, относящиеся к деймен-деринской свите [Пермяков и др., 1991]. Возраст свиты определен как титонский, со стратотипом в овраге Деймен-Дере, расположенном в районе наших исследований. Основанием для отнесения деймен-деринской свиты к титону послужили многочисленные находки аммонитов, аптихов и белемнитов из разрозненных обнажений, вскрывающихся вдоль южного и западного борта БК [Лысенко, 1964; Успенская, 1969; Пермяков и др., 1991]. Среди них найденные Н.П. Химшиашвили в районе Байдарского перевала [Успенская, 1969] раннетитонские виды Ptychophylloceras ptychostoma, Kossmatia affi. Richteri, которые характеризуют зону fallauxi Международной стратиграфической шкалы [Аркадьев, Рогов 2006; Gradstein et al., 2012], а также определенный Н.И. Лысенко [1964] Virgatosphinctes (= Paraulacosphinctes) transitorius, который является видом-индексом верхнетитонской зоны аммонитовой шкалы Крыма [Аркадьев, Рогов, 2006] и коррелируется с верхнетитонской зоной Durangites Международной шкалы.

<u>Толща III-b</u> может быть отнесена либо к нижней подсвите деймен-деринской свиты, представленной, по данным [Пермяков и др., 1991], флишоидным переслаиванием серых алевритистых глин и коричневатых обломочных известняков с пачками более мощных обломочных известняков, общей мощностью около 800 м, либо к байдарской свите, включающей красноцветные брекчиевидные известняки [Пермяков и др., 1991]. А.В. Швидкий [1999] и А.А. Федорова [2000] в составе байдарской свиты выделяют свиту кизил, свиту эли и свиту бечку. Отложения горы Биюк-Синор (г. Лысая), где нами описан опорный разрез известняковых брекчий толщи III-b, эти исследователи относят к свите кизил, представленной красноцветными рифогенными известняками. Н.И. Лысенко [1964] указывает на находки в известняках г. Биюк-Синор аммонитов свиты бечку. Как видим, мощная толща известняковых брекчий, вскрытая во многих обнажениях на территории Юго-Западного Крыма, до сих пор не имеет четкого положения в существующих региональных стратиграфических схемах. Известняковые брекчии Байдарской котловины часто упоминаются в литературе [Архипов, 1958; Муратов и др., 1960; Успенская, 1969] и считаются фациальными аналогами флишевых отложений толщи II-b [Архипов, 1958], а также титон-берриасских мергелистых известняков Ай-Петринской яйлы [Муратов и др., 1960; Успенская, 1969].

Нижняя граница известняковых брекчий западного склона г. Биюк-Синор соответствует терминальному титону [Платонов, Рудько, 2015], возраст верхней границы принимается как ранневаланжинский, поскольку с этого времени началось формирование терригенно-карбонатной толщи нижнего мела [Барабошкин, Янин, 1997], которую связывают с новым "платформенным" тектоническим этапом, наступившим после завершения позднекиммерийских деформаций [Милеев и др., 2006].

МАТЕРИАЛЫ И МЕТОДЫ

Толща I-b изучена в трех разрезах западной части Ай-Петринской и Байдарской яйл: разрез 1 – "Мердвен-Кая", разрез 2 – "Мшатка", разрез 3 – "Донгуз-Орун" (см. рис. 2). Толщи II-b и III-b изучены в двух опорных разрезах, каждый включает отложения обеих толщ: разрез 4 – "Биюк-Синор" и разрез 5 - "Кутур-Кая" (см. рис. 2). Для изотопно-геохимических и литолого-петрографических исследований из толщ I-b и III-b было отобрано 57 образцов известняков методом равномерного опробования. Из толщи известняковых брекчий отобраны образцы крупных обломков, в том числе образец известнякового олистолита, установленного в нижней части разреза г. Биюк-Синор. Были опробованы также горизонты микробрекчий и зернистых известняков, разделяющие слои грубообломочных карбонатных пород. Для изотопных исследований были собраны ростры белемнитов и аптихи аммонитов из флишоидных отложений, представленных в разрезе 5 ("Кутур-Кая").

Отобранные для изотопно-геохимического изучения известняки характеризуют различные фации мелководной карбонатной платформы, обстановки их формирования были реконструированы на основании анализа микрофаций в петрографических шлифах [Flügel, 2010]. Микрофациии известняков, слагающих Крымскую карбонатную платформу к настоящему времени изучены достаточно детально [Krajewski, 2010; Пискунов и др., 2012]. В настоящей работе микрофации со сходными генетическими признаками были объединены в микрофациальные типы (МТ), так же как ранее для района ПД [Пискунов и др., 2012]. Совокупность МТ практически полностью характеризует фациальные зоны Крымской карбонатной платформы (рис. 3), которая по своей морфологии, по-видимому, соответствовала ступенчатому рампу или окаймленной платформе с плоским шельфом. Известняки, представленные в разрезах 1 и 3, включают отложения рифовых фаций (МТ 5, 6, 7) (см. рис. 3) и ооидных отмелей (МТ 11), окаймляющих карбонатную платформу, а также отложения фаций внутренней части платформы (МТ 7, 9, 10, 12) (см. рис. 3). Известняки разреза 2 формировались на склоне карбонатной платформы и представлены микробиально-коралловыми рифами (MT 5, 6) и продуктами их

РУДЬКО и др.

Рис. 3. Распределение микрофациальных типов и значений δ^{18} О на фациальном профиле Крымской карбонатной платформы.

ФЗ – фациальная зона, БОВ – базис обычных волн, ВШВ – базис штормовых волн.

разрушения. Эти отложения накапливались в виде шлейфов в межрифовом пространстве, спускаясь по склону (МТ 8). Флишоиды (МТ 1, 2, 3) и известняковые брекчии разреза 4 накапливались на склоне и у его подножья в результате разгрузки дебрисных и турбидитовых потоков.

Образцы известняков были обработаны 1 N HCl соляной кислоты для удаления поверхностных загрязнений, затем распилены, отсортированы и растерты до состояния тонкой пудры. Для изотопных и химических определений использовалась пробы растертых известняков массой 10 г. Содержание Са и Мд в них определялось весовым методом после растворения части пробы в 1 N HCl, а концентрации Mn и Fe – атомно-абсорбционным методом в лаборатории химико-аналитических исследований ГИН РАН. Подготовка ростров белемнитов включала механическое удаление альвеолярной зоны и внешних слоев, которые могли подвергаться химическому взаимодействию с вмещающими породами. В образцах аптихов были удалены скульптурированные слои, загрязенные вмещающей породой (рис. 43). Очищенные фрагменты фоссилий были растерты до состояния тонкой пудры. Содержание Mn и Fe в растертых пробах фоссилий, также как в пробах известняков, определялось атомно-абсорбционным методом в лаборатории химико-аналитических исследований ГИН РАН.

В проанализированных пробах фоссилий и известняков (44 обр.) с сохранившейся седиментационной структурой и незначительным содержанием силикатной примеси (<4%), с низкими концентрациями Fe (<700 мкг/г) и Mn (Mn < 150 мкг/г), были определены изотопный состав Sr, δ^{13} C и δ^{18} O (таблица).

Для определения изотопного состава С и О в карбонатах был использован комплекс аппаратуры корпорации Thermoelectron, включающий масс-спектрометр Delta V Advantage и установку Gas-Bench-II. Разложение проб и стандартов КН-2, С-О-1 и NBS-19 проводилось с помощью H_3PO_4 при 50 °C. Значения δ^{13} С и δ^{18} О приводятся относительно стандарта V-PDB. Воспроизводимость определения δ^{13} С и δ^{18} О в стандартах находится в пределах $\pm 0.1\%$ и $\pm 0.2\%$, соответственно.

Изучение изотопного состава Sr образцов проводилось в обогащенных карбонатных фракциях, выделенных путем ступенчатого растворения по методике [Горохов и др., 1995]. Химическая процедура включала предварительную обработку навески образца раствором ацетата аммония (NH₄OAc) при комнатной температуре с последующим растворением остатка в 10%-ной уксусной кислоте. Содержания Sr определяли масс-спектрометрическим методом изотопного разбавления. Измерение изотопного состава Sr проводилось на многоколлекторном масс-спектрометре Triton TI в режиме одновременной регистрации ионных токов всех изотопов. По результатам параллельных измерений изотопных стандартов NIST SRM-987 и USGS EN-1 воспроизводимость результатов составила ±0.002% (2SD). Расхождение отношения ⁸⁷Sr/⁸⁶Sr в образцах по результатам повторных опытов не превышало 0.00001. Все значения ⁸⁷Sr/⁸⁶Sr в изученных образцах приведены к единому значению в стандарте SRM-987 = 0.710248.

Рис. 4. Микрофотографии известняков Байдарской котловины.

а — ооидный грейн-пакстоун (M122-4) с зонально-концентрическими ооидами (O), морским алломикритовым цементом (M_1), корочковым микритовым цементом (M_2) и спаритовым цементом (S), выполняющим первичные поры; б — онкоидный флоатстоун (T126-7) без следов поздней перекристаллизации, с крупным включением поростроматового онкоида (On) и участками спаритового кальцита (S), замещающего арагонитовый биокласт в центральной части онкоида и камеры сетчатых *Lithocodium* водорослевой оболочки;

в – интракластовый рудстоун (F123-1), сцементированный ранним зубчатым спаритом (указан стрелками), нарастающим на стенки пор, и блоковым спаритом, выполняющим центральные зоны в порах;

г – интракластовый флоатстоун (F121-3) с тромболитовым матриксом, участками блокового спарита (S) и кальцитовой жилой (указана стрелкой);

д — известняковая брекчия (DD122-5), вдоль границы обломка тромболита (T) с вмещающим интракластовым рудстоуном проходит стилолитовый шов (указан стрелкой);

е — известняковая брекчия (DD122-5) с обломками тромболитов (T), последовательными генерациями поздних цементов: вадозным микритом (M_{θ}) и гранулярным кальцитом (мелкие светлые ромбоэдры, рассеянные в микрите); ж — известняковая брекчия толщи III-b с гранулярным кальцитом (Gr), замещающим матрикс;

з – белемниты и аптихи (T124-7), использованные для изотопных исследований. Скульптурная часть аптиха (указана стрелкой) удалена при подготовке пробы к анализу.

РУДЬКО и др.

Содержание примесей (Mn, Fe, Sr), геохимические критерии отбора (Mg/Ca, Mn/Sr, Fe/Sr) и величины 87 Sr/ 86 Sr, δ^{13} C и δ^{18} O в различных микрофациальных типах известняков и фоссилиях южного борта Байдарской котловины

Номер образца	MT^1	С.П. ² , %	Mg, %	Mn, мкг/г	Fe, мкг/г	Sr, мкг/г	Mg/ Ca	Mn/Sr	Fe/Sr	$\delta^{13}C$	δ ¹⁸ Ο	⁸⁷ Sr/ ⁸⁶ Sr ²
Толща III-b (разрез 4 "Биюк-Синор")												
DD126-10	3	1.9	0.36	50	330	233	0.01	0.21	1.42	2.0	0.2	0.70728
DD126-6	12	0.6	0.25	40	150	218	0.01	0.18	0.69	2.2	1.1	<i>0.70719</i> ³
DD125-4	7	0.7	0.32	85	150	211	0.01	0.40	0.71	2.0	0.5	0.70722
DD125-3	7	1.2	0.27	85	200	217	0.01	0.39	0.92	1.8	1.1	0.70722
DD122-8	4	3.7	0.22	42	630	207	0.01	0.20	3.04	2.0	1.3	0.70724
DD122-7	4	1.2	0.33	80	490	246	0.01	0.33	1.99	2.4	0.5	0.70720
DD122-1	4	1.3	0.32	60	520	259	0.01	0.23	2.01	2.3	-0.5	0.70724
DD121-6	6	2.3	0.37	30	640	256	0.01	0.12	2.50	1.8	-0.4	0.70722
Толща II-b (разрез 5 "Кутур-Кая")												
T124-11-1		белемнит		48	320	1307		0.04	0.24	-2.1	0.1	0.70722
T124-11-2		белемнит		35	140	1118		0.03	0.13	-2.7	0.5	0.70721
T124-11-3		аптих		740	9300	906		0.82	10.26	0.0	-2.7	0.70722
T124-7-1		белемнит		65	210	1190		0.05	0.18	-3.1	0.6	0.70722
T124-7-2		аптих		1700	11500	557		3.05	20.65	-0.9	-1.7	0.70720
T124-1-1		белемнит		53	540	1230		0.04	0.44	-2.3	0.3	0.70717
T124-1-2		аптих		660	7100	1016		0.65	6.99	-1.1	-1.3	0.70720
Толща І-ь												
Разрез 1 "Мердвен-Кая"												
M122-31	10	1.7	0.27	15	290	212	0.01	0.07	1.37	3.2	0.9	0.70701
M122-30	10	1.7	0.20	20	210	172	0.01	0.12	1.22	3.2	0.9	0.70702
M122-27	12	0.6	0.13	13	110	174	0.00	0.07	0.63	3.1	-0.2	0.70701
M122-19	10	0.4	0.77	23	91	206	0.02	0.11	0.44	3.2	-1.6	0.70714
M122-18	9	0.5	0.12	5	65	207	0.00	0.02	0.31	3.1	-0.5	0.70702
M122-14	9	0.6	0.30	6	55	214	0.01	0.03	0.26	3.4	-0.4	0.70701
M122-13	6	0.5	0.22	16	52	190	0.01	0.05	0.46	3.0	-1.9	0.70713
M122-11	6	0.6	0.30	18	75	224	0.01	0.08	0.33	2.9	-1.9	0.70708
M122-9	10	0.5	0.12	20	170	262	0.00	0.08	0.65	2.8	-2.9	0.70710
M122-5	11	0.6	0.17	16	100	290	0.00	0.06	0.34	3.2	-1.7	0.70711
M122-4	11	0.7	0.12	12	93	326	0.00	0.04	0.29	3.2	0.1	0.70709
M122-2	10	0.8	0.13	11	85	273	0.00	0.04	0.31	3.1	-1.7	0.70710
Разрез 2 "Мшатка"												
F123-1	4	1.7	0.15	40	190	200	0.00	0.20	0.95	2.7	0.0	0.70699
F122-3	6	0.9	0.20	40	190	173	0.01	0.23	1.10	2.7	-0.4	0.70700
F121-8	4	2.6	0.31	140	1280	216	0.01	0.65	5.93	3.4	1.0	0.70699
F121-3	8	0.6	0.20	50	170	194	0.01	0.26	0.88	3.2	-0.3	0.70700
Разрез 3 "Донгуз-Орун"												
T128-5	11	0.8	0.36	59	130	185	0.01	0.32	0.70	3.2	-0.4	0.70692
T128-4	11	1.0	0.46	51	130	182	0.01	0.28	0.71	3.3	-0.3	0.70692
T126-7	12	1.0	0.41	50	100	131	0.01	0.38	0.76	3.2	-1.5	0.70695

Номер образца	MT^1	С.П. ² , %	Mg, %	Mn, мкг/г	Fe, мкг/г	Sr, мкг/г	Mg/ Ca	Mn/Sr	Fe/Sr	$\delta^{13}C$	$\delta^{18}O$	⁸⁷ Sr/ ⁸⁶ Sr ²
T126-8	12	0.5	0.56	47	100	177	0.01	0.27	0.56	3.3	-1.2	0.70695
T126-9	12	0.7	0.20	42	110	166	0.01	0.25	0.66	3.4	-0.7	0.70691
T127-7	7	0.6	0.36	70	190	134	0.01	0.52	1.42	3.4	0.1	0.70692
T127-1	5	0.7	0.20	90	230	140	0.01	0.64	1.64	3.5	0.8	0.70692
плато Демерджи												
D106-26	11	1.4	0.3	190	130	287	0.01	0.66	0.5	2.8	-1.2	0.70711
D106-21	12	0.8	0.4	150	140	300	0.01	0.50	0.5	3.0	-0.5	0.70715
D106-18	11	5.4	0.4	90	770	502	0.01	0.18	1.5	3.2	-0.3	0.70710
D106-12	7	1.9	0.6	140	210	305	0.01	0.46	0.7	2.6	-0.5	0.70708
D104-34	12	1.6	0.3	170	530	230	0.01	0.74	2.3	2.8	-0.7	0.70708
D104-27	7	1.3	0.6	190	360	297	0.01	0.64	1.2	3.3	-0.7	0.70709
D104-23	12	1.9	0.5	60	430	310	0.01	0.19	1.4	3.0	-0.7	0.70707
D104-15	10	1.2	0.5	140	110	284	0.01	0.49	0.4	3.1	-0.8	0.70707
D101-25-1	7	1.2	0.4	45	170	390	0.01	0.11	0.4	2.8	-0.8	0.70705
D101-25	7	1.2	0.4	40	90	400	0.01	0.10	0.2	2.8	-0.8	0.70705
D101-17	6	1.1	0.4	50	130	340	0.01	0.15	0.4	2.7	-0.8	0.70704
D101-7	12	1.3	0.4	50	250	262	0.01	0.19	1.0	2.7	-1.3	0.70701
D101-3	12	2.8	0.5	70	450	360	0.01	0.19	1.3	2.9	-0.9	0.70703

Таблица. Окончание

Примечание. ¹ — микрофациальные типы (см. рис. 3); ² — силикатная примесь; ³ — курсивом выделены значения 87 Sr/ 86 Sr в наименее измененных образцах, удовлетворяющих геохимическим критериям: Mg/Ca < 0.02, Mn/Sr < 0.2, Fe/Sr < 1.6.

ПЕТРОГРАФИЧЕСКАЯ ХАРАКТЕРИСТИКА КАРБОНАТНЫХ ПОРОД

Верхнеюрские карбонатные толщи в течение длительной постседиментационной истории подверглись минералогическим и геохимическим изменениям, которые могли исказить изотопные характеристики первичных осадков. В связи с этим специальное внимание было уделено выявлению следов перекристаллизации в анализируемых породах. При описании структурно-текстурных особенностей карбонатных пород использована классификация, предложенная в работе [Embry, Klovan, 1971] а также термины по [Dunham, 1962], а при обсуждении постседиментационных преобразований — терминология, рекомендованная в работе [Flügel, 2010].

В качестве обломочных компонентов в известняках обычно присутствуют: водорослево-бактериальные онкоидные корочки без явных признаков перекристаллизации, зонально-концентрические ооиды (см. рис. 4а, б), раковинки крупных бентосных фораминифер, остатки серпулид, скелетные фрагменты иглокожих и обломки раковин моллюсков. Значительная часть органогенного детрита сразу после осаждения подверглась инфестации [Кабанов, 2000], что привело к формированию

ЛИТОЛОГИЯ И ПОЛЕЗНЫЕ ИСКОПАЕМЫЕ № 6 2017

устойчивых к перекристаллизации микритовых корочек или к полной микритизации зерен с образованием пелоидов багамитного типа.

Матрикс органогенно-детритовых вакстоунов, пакстоунов и флоатстоунов в основном состоит из микритово-пелоидного цемента, который представляет собой литифицированный карбонатный ил. В рифовых известняках значительную часть матрикса составляют тромболиты — комковатые сгустки микрита, которые интерпретируются как фоссилизированные формы роста микробных сообществ [Kennard, James, 1986]. Отсутствие видимой поздней диагенетической перекристаллизации перечисленных аллохем и цементов позволяет надеяться на сохранность изотопно-геохимического сигнала среды седиментации.

Все исследованные известняки характеризуются закрытой пористостью, обусловленной развитием ранних и поздних генераций карбонатных цементов, приведшим к литификации карбонатных пород. Наиболее ранними генерациями цемента, вероятно, следует считать: а) микритовый кальцит, который развит в виде корочек на ооидах и биокластах, и заполняет первичное поровое пространство в ооидных и биокластовых грейнстоунах, б) кальцитовый спарит в виде зубчатых корочек с радиальной структурой и волнистым погасанием, обрастающий стенки первичных пор в биокластовых и интракластовых рудстоунах; в) вадозный микритовый кальцит, развитый в геопетальных структурах и строматаксисах микробиально-коралловых биндстоунов и фрэймстоунов.

Центральные части пор в карбонатных осадках бывают выполнены блоковым и друзовым спаритом, который часто замещает более ранние корочковые цементы (см. рис. 4в). Спаритовый кальцит также выполняет полости избирательного растворения, замещает скелетные обломки кораллов, дазикладовых водорослей и строматопор. Этот тип спаритового цемента, вероятно, осаждался из метеорных вод на начальных этапах захоронения осадка. В образцах с хорошо сохранившейся седиментогенной структурой развитие блокового спарита обычно ограничено выполнением полостей первичных пор и частичным замещением арагонитовых биокластов (см. рис. 4а, б).

Генерации спаритового цемента, которые выполняют пустоты вторичной пористости и трещиноватости (см. рис. 4г), могли быть обусловлены метеорным диагенезом карбонатных пород, связанным с их экспозицией на орогенной стадии. Образцы известняков с крупными скоплениями спаритового цемента, выполняющего вторичные пустоты, исключались из изотопно-геохимических исследований.

В наиболее интенсивно преобразованных породах, как правило, развиты стилолиты (см. рис. 4д) и красноцветные цементы стадии позднего метеорного диагенеза карбонатных осадков. Преобразованные породы были встречены в толще известняковых брекчий III-b. Стилолиты в них часто подчеркнуты выделениями окислов железа, скоплениями глинистых минералов. В породах присутствуют отдельные зоны или участки, выполненные ожелезненным микроспаритом, часто включающим идиоморфные кристаллы кальцита или доломита (см. рис. 4е). Красноцветные цементы в преобразованных карбонатных породах заметны уже при макроскопических наблюдениях и связаны с процессами растворения под давлением, которые сопровождались образованием гнездовидных скоплений гранулярного кальцита (см. рис. 4ж). Содержание примесей в таких известняках (Fe 1400-2760 мкг/г, Mn 250-320 мкг/г) обычно превышает допустимые нормы для проведения Sr-хемостратиграфических исследований.

ИЗОТОПНО-ГЕОХИМИЧЕСКИЕ Свидетельства преобразований пород и фоссилий

Поскольку признаком перекристаллизации первичного карбонатного материала является возрастание концентраций Fe и Mn и понижение концентраций Sr в карбонатных породах [Morse, Маскепzie, 1990; Tucker, Wright, 1990; Denison et al., 1994; McArthur, 1994; Кузнецов и др., 2006, 2008], мы использовали абсолютные величины отношений Mn/Sr и Fe/Sr, а также зависимости между этими величинами и значениями ⁸⁷Sr/⁸⁶Sr, δ^{13} C, δ^{18} O как индикаторы нарушения первичного изотопного сигнала морских осадков.

Содержание Sr в изученных образцах колеблется незначительно, от 134 до 326 мкг/г (см. табл.). Средняя концентрация Sr в известняках (210 мкг/г) низкая, по сравнению с современными морскими осадками (800-1600 мкг/г) [McArthur, 1994; Кузнецов и др., 2012]. Это различие может быть связано с потерей осадками Sr при перекристаллизации или с долговременными вариациями химического состава океана [Stanley et al., 1999]. Концентрации Fe и Mn в образцах, прошедших петрографический отбор, относительно небольшие и составляют 52-770 мкг/г и 5–190 мкг/г, соответственно (см. табл.). Значения параметров Mn/Sr и Fe/Sr в известняках не проявляют заметной корреляции с величинами ⁸⁷Sr/⁸⁶Sr, δ^{13} С и δ^{18} О (рис. 5), что свидетельствует в пользу отсутствия значимых нарушений изотопных систем. В то же время, образцы T126-9 (разреза 3, толщи I-b) и DD126-6 (толща III-b) с наименьшими значениями Mn/Sr и Fe/Sr демонстрируют наиболее низкие значения ⁸⁷Sr/⁸⁶Sr (см. табл.). Единственный образец (М122-19), в котором был установлен вторичный доломит (Ca/Mg 0.02), характеризуется наиболее высоким отношением ⁸⁷Sr/⁸⁶Sr для разреза 1. Полученные зависимости показывают, что изменение ⁸⁷Sr/⁸⁶Sr в верхнеюрских известняках БК происходило в направлении их обогащения радиогенным ⁸⁷Sr, т.е. так же, как в известняках ПД [Рудько и др., 2014].

Значения δ^{18} О и δ^{13} С в известняках БК и ПД изменяются от -2.9 до +1.3% и от +1.2 до +3.5%, соответственно (см. табл.), и попадают в область значений современных и древних морских карбонатных осадков [Hudson, 1977]. При этом колебания величины δ^{18} О обнаруживают отчетливую связь с фациальными особенностями известняков (см. рис. 5). Мелководные осадки внутренней части и бровки карбонатной платформы (МТ 6, 7, 9, 10, 11, 12) характеризуются пониженными значениями δ^{18} O (от -2.9 до +0.1%), в то время как в отложениях, накапливавшихся на умеренных и значительных глубинах склона и подножья платформы, (MT 3, 4, 5, 8, 9, 10) – значения δ¹⁸О более высокие (от -0.5 до +1.3%). В то же время, в известняковых брекчиях толщи III-b иногда встречаются обломки мелководных известняков (МТ 7, 12) со значениями $\delta^{18}O$ (+1.1‰), которые характерны для относительно глубоководных отложений.

Подобная изменчивость δ^{18} О в известняках может быть связана как с фациальными условиями их формирования, так и с постседиментационными преобразованиями образующих эти известняки карбонатных зерен. Например, фораминиферовые

Рис. 5. Диаграммы зависимости ⁸⁷Sr/⁸⁶Sr, δ^{18} O от Fe/Sr, Mn/Sr и соотношения δ^{13} C – δ^{18} O и ⁸⁷Sr/⁸⁶Sr – δ^{18} O в верхнеюрских известняках и фоссилиях.

Серыми стрелками показаны основные тенденции изменений в процессах диагенеза. Пунктирные линии разделяют поля неизмененных и измененных известняков, в разной степени пригодных для Sr-хемостратиграфической корреляции.

1–4 – известняки Байдарской котловины: 1 – разрез 1 "Мердвен-Кая", 2 – разрез 2 "Мшатка", 3 – разрез 3 "Донгуз-Орун", 4 – разрез 4 "Биюк-Синор"; 5, 6 – фоссилии из разреза 5 "Биюк-Синор": 5 – аптихи, 6 – белемниты; 7 – известняки плато Демерджи.

илы, сцементированные на глубине, заметно обогашены ¹⁸О по сравнению со скелетами фораминифер [Hudson, 1977]. В мелководной обстановке, где карбонатные осадки могут эпизодически подвергаться субаэральной экспозиции, их преобразование происходит во взаимодействии с пресными водами, которые, по сравнению с морскими осадками, обеднены ¹⁸О. Развитие цементов в метеорной обстановке приводит к относительному понижению значений величины δ^{18} O в мелководных известняках. Разнообразие типов и генераций кальцитового цемента, выполняющего поры известняков, выявленное при петрографических наблюдениях, подтверждает сильную зависимость значений δ¹⁸О от раннедиагенетических преобразований в карбонатных осадках. В связи с этим, значения величины δ^{18} O, полученные нами для известняков, скорее всего, непригодны для определения морской палеотемпературы, однако они могут быть использованы для изотопной характеристики различных фаций карбонатных отложений.

При отсутствии заметной корреляции δ^{18} O и ⁸⁷Sr/⁸⁶Sr в целом (см. рис. 5), можно отметить некоторые закономерные изменения этих величин на отдельных интервалах разреза (рис. 6). В известняках пачки 2 разреза "Донгуз-Орун", накапливавшихся в мелководных условиях, значения δ^{18} O постепенно уменьшаются при одновременном возрастании значений ⁸⁷Sr/⁸⁶Sr. Вероятно, противоположные тенденции в поведении δ^{18} O и ⁸⁷Sr/⁸⁶Sr могли происходить вследствие изменений δ^{18} O и ⁸⁷Sr/⁸⁶Sr в морской воде позднеюрских водоемов.

2017

№ 6

ЛИТОЛОГИЯ И ПОЛЕЗНЫЕ ИСКОПАЕМЫЕ

69

Резкие изменения значений $\delta^{18}O$ (от -2.9 до +0.9‰) и ⁸⁷Sr/⁸⁶Sr (от 0.70701 до 0.70714) характерны для толщи известняков разреза 1 "Мердвен-Кая" (см. рис. 6). Возрастание ⁸⁷Sr/⁸⁶Sr (до 0.70708–0.70714) в них происходит на фоне заметного снижения $\delta^{18}O$ (до < -1.5%). Подобные колебания значительной амплитуды в известняках с относительно низким содержанием Fe и Mn могли быть обусловлены перекристаллизацией первичных осадков в обстановке взаимодействия с метеорными водами. Другим объяснением могло бы служить тектоническое совмещение карбонатных пород разного возраста и разной фациальной принадлежности, однако такая возможность представляется менее вероятной, поскольку в изученном разрезе явных признаков тектонических нарушений не обнаружено.

Вариации изотопного состава углерода в известняках не показывают заметной связи с обстановками формирования, величинами δ^{18} O и 87 Sr/ 86 Sr, а также концентрациями Fe и Mn. Это позволяет предполагать, что значения δ^{13} C отражают изотопный сигнал среды седиментации.

Следы постседиментационных изменений изотопного состава Sr, O и C в изученных известняках проявляются в основном локально, что позволяет считать взаимодействие карбонатных осадков с метеорными и пластовыми водами на стадии раннего диагенеза, а также карстовые процессы — основными факторами, контролировавшими преобразование известняков. Слабая степень преобразованности верхнеюрских известняков Крымской яйлы исключает возможность их высокотемпературной перекристаллизации в условиях глубокого погружения и указывает на вероятное преувеличение их мощности, которая оценивается в 3000–4000 м [Успенская, 1969].

Концентрации Mn и Sr в исследованных рострах белемнитов низкие, и соответствуют первичному биогенному кальциту [Schneider et al., 2009]. Относительно слабое обогащение Fe было обнаружено в образцах Т124-1-1 (540 мкг/г) и Т124-11-1 (320 мкг/г). Железо в известняках этих образцов могло быть заимствовано из глинистых минералов вмещающих мергелей. Карбонатное вещество аптихов, в отличие от белемнитов, обогашено Fe. Mn и обеднено Sr. Различное содержание примесей в разных типах фоссилий могло быть обусловлено особенностями процессов биоминерализации в разных морских организмах. В неизмененном кальците, слагающем ростры белемнитов, концентрации Fe и Mn, как правило, не превышают первых десятков мкг/г, а концентрация Sr – более 1000 мкг/г [Price, Sellwood, 1994]. Содержание Fe и Mn в карбонатном веществе аптихов обычно достигает сотен мкг/г, а Fe – иногда тысячи мкг/г [Price, Sellwood, 1994; Kruta et al., 2009].

Обогащение кальцита Fe в фоссилиях происходило в восстановительных условиях диагенеза, связанного с началом погружения карбонатных толщ. Можно предполагать, что кристаллизация диагенетических кальцитов из растворов, взаимодействовавших с глинистыми вмещающими породами, могла исказить первичные изотопные характеристики, однако разные концентрации Fe и Mn, наблюдаемые в белемнитах и аптихах, не сопровождаются заметными различиями по δ^{18} O, δ^{13} C и 87 Sr/ 86 Sr. Корреляция величин δ^{18} O, δ^{13} C и отношения 87 Sr/ 86 Sr отсутствует, что свидетельствует в пользу седиментогенной природы 87 Sr/ 86 Sr в исследованных рострах белемнитов и раковинах моллюсков.

ВЫБОР ОБРАЗЦОВ ДЛЯ Sr-XEMOCTPATИГРАФИЧЕСКОЙ КОРРЕЛЯЦИИ

Для отбора образцов, пригодных для SIS корреляции, принимались параметры Mn/Sr < 0.2 и Fe/Sr < 1.6, Mg/Ca < 0.02, которые ранее использовались для верхнеюрских известняков ПД [Рудько и др., 2014]. Эти параметры соответствуют наиболее "жестким" критериям, применяемым при изучении докембрийских и палеозойских известняков [Denison et al., 1994; Кузнецов и др., 2006, 2008, 2014]. Среди исследованных известняков БК (31 обр.) пригодными являются 13 обр., из которых 6 обр. (разрез 1 "Мердвен-Кая", пачка 1 и 2) характеризуются довольно высокими значениями 87 Sr/ 86 Sr (> 0.70709), значительными колебаниями величины δ^{18} O (от -2.9 до +0.1‰) и рассматриваются как "измененные".

К фаунистическим остаткам, предназначенным для SIS корреляции, применяются различные геохимические критерии. Среди изученных нами фоссилий наиболее пригодным является обр. Т124-11-2 (ростр белемнита), поскольку соответствует наиболее строгим критериям (Mn <50 мкг/г, Fe <150 мкг/г) геохимического отбора [Schneider et al., 2009 и др.]. Величина отношения ⁸⁷Sr/⁸⁶Sr (0.70721) в этой пробе белемнита близка значениям. установленным в аптихах (0.70720-0.70722). для которых, однако, критерии выбора пока не могут быть установлены. В связи с этим, мы допускаем, что значения ⁸⁷Sr/⁸⁶Sr в образцах "измененных" известняков и в образцах фоссилий (за исключением ростра белемнита обр. Т124-11-2) соответствуют максимально возможным значениям 87 Sr/ 86 Sr в среде седиментации.

Sr-XEMOCTPATИГРАФИЧЕСКАЯ КОРРЕЛЯЦИЯ

Величина отношения 87 Sr/ 86 Sr в позднемезозойском океане постепенно повышалась от 0.7068 (наиболее низких значений в истории фанерозоя) в поздней юре и достигла 0.7075 к середине раннего мела [Jones et al., 1994; Veizer et al., 1999; McArthur et al., 2001]. Этот тренд был установлен по результатам исследований изотопного состава ростров белемнитов, которые были отобраны из слоев, датированных с использованием зональных аммонитовых шкал. Ниже приводятся результаты корреляции Sr-изотопных характеристик наименее измененных известняков из разрезов БК и ПД с существующими Sr-хемостратиграфическими данными для верхнеюрских аммонитовых зон.

Наиболее низкие значения ⁸⁷Sr/⁸⁶Sr выявлены в отложениях хребта Донгуз-Орун (разрез 3). Установленный здесь интервал значений ⁸⁷Sr/⁸⁶Sr (0.70691-0.70695) близко соответствует Sr-изотопным данным (0.70692-0.70697) из разрезов Лузитанского бассейна Португалии [Schneider et al., 2009], которые увязаны с зонами Ataxioceras hypselocyclum – Aulacostephanus eudoxus. Сопоставление с зонами бореальной аммонитовой шкалы показывает, что эти значения попадают в широкий биостратиграфический интервал Rasenia cymodoce – Aulacostephanus autissiodorensis (0.70689-0.70700) [Jones et al., 1994], но ближе всего соответствуют зонам Aulacostephanus mutabilis и Aulacostephanus eudoxus [Gradstein et al., 2012], позднего кимериджа.

Sr-изотопные характеристики известняков (0.70699) пачки 5 разреза 2 (г. Мшатка) и известняков (0.70701–0.70702) пачки 3 разреза 1 (г. Мердвен-Кая) могут быть сопоставлены с изотопными данными, установленными для зон Aulacostephanus autissiodorensis – Pectinatites scitulus (0.70700–0.70703) бореальной аммонитовой шкалы [Jones et al., 1994] и, достаточно условно, с данными для зон Hybonoticeras beckeri – Hybonoticeras hybonotum (0.70702–0.70703) тетической шкалы [Schneider et al., 2009]. В обоих случаях биостратиграфический интервал соответствует терминальному кимериджу – раннему титону [Gradstein et al., 2012].

Пропуск значений ⁸⁷Sr/⁸⁶Sr, лежащих в интервале от 0.70695 до 0.70699, в исследованных известняках показывает, что поздний кимеридж представлен в разрезах не полностью. Обоснованным можно считать лишь присутствие слоев, накопившихся до начала позднего кимериджа и слоев, соответствующих терминальному кимериджу – началу титона.

Значения 87 Sr/ 86 Sr в фоссилиях, отобранных в разрезе 5 ("Кутур-Кая") группируются в пределах интервала значений (0.70717–0.70722), характерного для пограничных отложений юры и мела. Разрешающая способность метода SIS в пределах титона – нижнего берриаса понижается вследствие относительно небольшого количества хорошо датированных определений и общего выполаживания профиля кривой 87 Sr/ 86 Sr [McArthur et al., 2001, 2004; Gröcke et al., 2003; Gradstein et al., 2012]. Значение 87 Sr/ 86 Sr (0.70720) в ростре белемнита, происходящего из зоны Jacobi,

а также ряд определений с более высокими значениями ⁸⁷Sr/⁸⁶Sr (0.70725-0.70730) характеризуют зону Boissieri [McArthur et al., 2004] в берриасских разрезах Франции. В отложениях Русской платформы значения ⁸⁷Sr/⁸⁶Sr (0.70716-0.70720) были определены для средне-верхневолжских (титонских) аммонитовых зон Virgatites virgatus – Craspedites nodiger [Gröcke et al., 2003], причем верхневолжский интервал разреза здесь заключен в отложениях мошностью менее 1 м и со слелами размывов. а определения возраста крайне немногочисленны. Более низкие значения ⁸⁷Sr/⁸⁶Sr (0.70716) характеризуют зону Glaucolithus [Jones et al., 1994], примерно соответствующую верхам средневолжского полъяруса. Более высокие значения ⁸⁷Sr/⁸⁶Sr отмечены в верхней части рязанского яруса Англии, для зон Surites stenomphalus – Peregrinoceras albidum (0.70723-0.70726) [Jones et al., 1994] и на Русской платформе, для зон Riasanites riasanensis – Surites tzikwinianus (0.70722–0.70726) [Gröcke et al., 2003], эти зоны сопоставляются со средней и верхней частями берриасского яруса [Gradstein et al., 2012].

Проанализированный нами ростр белемнита (обр. T124-1-1), с величиной ⁸⁷Sr/⁸⁶Sr (0.70717), по возрасту может быть отнесен к зоне Microcanthum позднего титона, в то время как остальные проанализированные остатки фауны, собранные в разрезе 4 ("Кутур-Кая") по Sr-хемостратиграфическим данным (0.70720–0.70722) соответствуют зоне Jacobi терминального титона – раннего берриаса.

Единственный образец (DD126-6) известняка. отобранный из обломка брекчий толщи III-b, удовлетворяет принятым критериям геохимического отбора. Значение ⁸⁷Sr/⁸⁶Sr (0.70719) в нем соответствует пограничному интервалу юры и мела. Это значение хорошо согласуется с биостратиграфическим возрастом обломков известняковых брекчий, который соответствует зоне Calpionella alpina [Платонов, Рудько, 2015]. Определенные в обломках брекчий значения ⁸⁷Sr/⁸⁶Sr, очевидно, определяют время формирования отложений в источнике сноса и нижнюю границу времени накопления самой толщи известняковых брекчий. Формирование брекчий завершилось не позднее раннего валанжина, о чем можно судить по значению ⁸⁷Sr/⁸⁶Sr (0.70728) в известняке (обр. DD126-10) из прослоя грейнстоуна, залегающего в верхней части разреза 4.

УТОЧНЕНИЕ СХЕМЫ РЕГИОНАЛЬНОЙ КОРРЕЛЯЦИИ

Отложения толщи I-b, изученные в районе БК, сформировались до начала титона, а карбонатные отложения ПД [Рудько и др., 2014] формировались вплоть до начала позднего титона (рис. 7). Проведенное уточнение возраста карбонатных пород толщи I-b позволяет сопоставлять их со стратотипическим разрезом яйлинской свиты

в районе хребта Иограф, для которой определён кимеридж-титонский возраст по фораминиферам [Krajewski, Olszewska, 2007].

Согласно ранее сложившимся представлениям, массивные и слоистые известняки, слагающие яйлу Горного Крыма, должны были бы включать оксфордско-кимериджскую часть яйлинской свиты и отложения титона ялтинской, байдарской и беденекырской свит. В связи с отсутствием находок фауны позднего кимериджа, предполагалось существование крупного регионального перерыва в осадконакоплении [Успенская, 1969]. Проведенная SIS-корреляция известняков толщи I-b позволяет усомниться в существовании оксфордской части яйлинской свиты, не подтвержденной в изученном нами районе и в стратотипическом разрезе, констатировать присутствие позднего кимериджа в составе верхнеюрских известняков Яйлы.

В результате сравнительного изучения Sr-изотопной характеристики известняков в разрезах 1, 2 и 3 толщи I-b установлено постепенное омоложение возраста карбонатных пород южного борта БК в направлении с северо-запада к юго-востоку. Поскольку общее погружение моноклинали верхнеюрских отложений в структуре первой гряды Крымских гор происходит в северо-западном направлении, такая последовательность может свидетельствовать о налегании древних слоев на более молодые и существовании надвиговых нарушений в толще I-b.

Отложения г. Кутур-Кая с остатками фауны, возраст которых предположительно соответствует аммонитовой зоне Jacobi, могут быть сопоставлены с глубоководными отложениями разрезов Двуякорной бухты и мыса Ильи [Гужиков и др., 2012]. В обоих районах появление светло-серых мергелей знаменует переход от глубоководной турбидитовой седиментации, типичной для позднего титона, к относительно более мелководным гемипелагическим отложениям с прослоями кальцитурбидитов в конце юры — начале раннего мела.

Согласно био- и хемостратиграическим данным в обломках толщи известняковых брекчий (III-b) в районе БК присутствуют известняки терминального титона – раннего берриаса. Возраст обломков соответсвенно определяет нижнюю границу начала формирования этих толщ. В то же время присутствие разрезов переходного типа между брекчиями и гемипелагитами толщи II-b, которые содержат фауну раннего берриаса указывает на то, что сами брекчии в раннем берриасе уже накапливались. То есть возраст обломков, слагающих известняковые брекчии БК и возраст по-крайней мере части слоев брекчий близко совпадают и приходятся на ранний берриас. Толща известняковых брекчий в районе ПД накопилась не раньше конца раннего титона (см. рис. 7), но более точно время ее формирования пока не установлено. Кроме этого, есть указания на существование глыбовых и брекчиевых известняков в переслаивании с глинами позднего титона и берриаса в районе р. Тонас [Успенская, 1969], а далее к востоку горизонт кальцитурбидитов мощностью более 5 м отмечает границу юры и мела в глубоководном разрезе Двуякорной бухты [Гужиков и др., 2012]. Все это указывает на то, что в формировании брекчий проявлено региональное событие, произошедшее вблизи границы юры и мела.

Полученные новые данные указывают на необходимость ревизии существующей региональной стратиграфической шкалы [Пермяков и др., 1991] и могут быть использованы при создании ее новой версии.

ВАРИАЦИИ δ¹³С В ОТЛОЖЕНИЯХ КРЫМСКОЙ КАРБОНАТНОЙ ПЛАТФОРМЫ

Вариации δ^{18} О в изученных породах обнаруживают отчетливую зависимость от фациального типа карбонатных отложений. В известняках, формировавшихся в близких условиях, колебания δ^{18} О во времени незначительны (рис. 8). Изотопный состав С в известняках не показывает признаков постседиментационного изменения или заметной фациальной зависимости, следовательно, колебания величины δ^{13} С отражают изменения изотопного состава растворенного неорганического углерода (PHУ) в бассейне седиментации.

Установленная методами Sr-хемостратиграфии последовательность формирования отложений БК и ПД позволяет оценить изменения изотопного состава С в отложениях Крымской карбонатной платформы. Геохронологическая калибровка кривой колебаний δ^{13} С в течение позднекимериджско-раннеберриасского времени проведена методом проекции отношений ⁸⁷Sr/⁸⁶Sr в неизмененных известняках (13 обр.) на кривую ⁸⁷Sr/⁸⁶Sr, приведенную в работе [Gradstein et al., 2012] и принятую в качестве стандарта. Нижняя часть кривой δ^{13} C, построенная по образцам из разреза 3 ("Донгуз-Орун"), условно отнесена к временному интервалу, который соответствует концу раннего – началу позднего кимериджа, которым определяется верхний возрастной предел формирования отложений, представленных в этом разрезе.

Значения δ^{13} С в известняках толщи I-b БК и ПД относительно слабо понижались в течение кимериджа и раннего титона от 3.2–3.5 до 2.7–3.4‰. В известняковых брекчиях толщи III-b, формировавшихся с раннего титона до раннего берриаса, фиксируется понижение δ^{13} С до 1.8–2.4‰ (см. рис. 8). Полученные значения δ^{13} С в целом характеризуют обстановку мелководного шельфа.

Проанализированные остатки фауны в пограничных отложений юры и мела характеризуют изотопный состав С в пелагической обстановке. Ростры белемнитов отличаются более низкими значениями δ^{13} C (-2.1...-3.1‰) в сравнении с аптихами

Рис. 8. Временные вариации ⁸⁷Sr/⁸⁶Sr, δ^{18} O и δ^{13} C в отложениях верхнеюрской карбонатной платформы Горного Крыма. Сводная кривая δ^{13} C основана на SIS корреляции. Крупными значками показаны известняки и фоссилии, значения ⁸⁷Sr/⁸⁶Sr которых использовались для калибровки кривой δ^{13} C по геохронологической шкале [Gradstein et al., 2012].

1 – известняки, 2 – аптихи, 3 – белемниты.

(до -1.3%). Это можно объяснить разной глубиной обитания белемнитов и аммонитов в водной толще, которая характеризовалась стратификацией изотопного состава РНУ. Актуалистические наблюдения показали, что такая стратификация возникает в результате усиленного фотосинтеза в поверхностном слое и разложения органического вещества на глубине — работы "биологического насоса" [Kroopnick, 1985; Raven, Falkowsky, 1999].

Средние значения δ^{13} С в массивных известняках толщи III-b, а также в аптихах и рострах белемнитов толщи II-b, т.е в близких по возрасту толщах, также различаются. Более низкие значения δ^{13} С в фоссилиях (-2%), вероятно, объясняются эффектом биофракционирования углерода при формировании элементов скелета и раковин морских моллюсков [Žák et al., 2012]. Витальный эффект приводит к понижению δ^{13} С в раковинах различных групп моллюсков по сравнению с изотопным составом PHУ воды из которой извлекается СаСО₃, тогда как изотопный состав С известняков

кие тов, которые формируются в изотопном равновесии с водой. Разница значений между δ^{13} С кораллов и бесскелетных карбонатных зерен в современных осадках может достигать 5‰ [Gischler et al., 2009]. Тренд с постепенным понижением δ^{13} С в течение кимериджа и раннего титона и более резким сни-

кимериджа и раннего титона и более резким снижением δ^{13} С в позднем титоне — раннем берриасе, установленный в известняках Горного Крыма, хорошо согласуется с профилем кривой изменения δ^{13} С в верхнеюрских отложениях других регионов мира [Jenkyns et al., 2002; Nunn, Price, 2010; Žák et al., 2012; Kakizaki et al., 2013]. Среди верхнеюрских отложений с известным δ^{13} С отложения Крымской карбонатной платформы характеризуются наиболее тяжелым изотопным составом углерода. Измеренные нами в известняках значения δ^{13} С на 0.5–1‰ выше полученных для карбонатных пород западной части Тетиca [Padden et al., 2002; Coimbra et al., 2009; Michalik

складывается из $\delta^{13}C$ раковинного детрита различ-

ных групп организмов с неопределенным виталь-

ным эффектом и δ^{13} С хемогенных зерен и цемен-

et al., 2009; Žák et al., 2012], а в рострах белемнитов – на 1.5‰ выше, чем в белемнитах суббореальной и бореальной областей [Nunn, Price, 2010]. Более тяжелый, по сравнению с отложениями западной окраины Тетиса, изотопный состав С в отложениях Крымской карбонатной платформы требует объяснения.

Вариации изотопного состава углерода в тетических осадках позднеюрского времени были изучены на примере отложений внешней части карбонатного рампа во Франции и Швейцарии [Padden et al., 2002], а также в отложениях внутриокеанических поднятий с конденсированным осадконакоплением в разрезах Испании [Coimbra et al., 2009]. Значения δ¹³С в них изменяются от 2.9‰ в кимеридже и до 1.3‰ у границы юры и мела. Более низкие значения δ^{13} С (1.1–1.5‰) были получены при изучении титон-берриасских конденсированных пелагических отложений Польши [Michalik et al., 2009] и Испании [Žák et al., 2012]. Таким образом, сопоставляя данные по верхнеюрским отложениям Тетических окраин, можно предположить, что значения δ^{13} C зависят от глубины моря, в пределах которой отлагались карбонатные осадки. Возможно, вертикальная стратификация изотопного состава углерода [Kroopnick, 1985] в морских водах Тетиса влияла не только на величины δ^{13} С в раковинах нектонных моллюсков, но и на величины δ^{13} C в отложениях карбонатных шельфов, формировавшихся на разной глубине (в пределах сотен метров). Такое влияние могло проявиться в том случае, когда аллохемы или микритовые илы длительное время оставались на поверхности морского дна до захоронения и претерпевали изотопный обмен с морскими водами, сильно обедненными ¹³С на глубине [Kroopnick, 1985]. В обычных случаях осадки мелководного шельфа сохраняли изотопный сигнал приповерхностных вод, обогащенных ¹³С.

В современном океане также отмечался т.н. эффект "старения вод" над карбонатными платформами, приводящий к обеднению РНУ тяжелым изотопом ¹³С [Patterson, Walter, 1994]. Например, над Багамской банкой и шельфом Флориды растворенная в морских водах углекислота характеризуется величинами δ^{13} C, которые в среднем на 4‰ ниже по сравнению с фотическим слоем открытого океана [Patterson, Walter, 1994]. При формировании верхнеюрской Крымской карбонатной платформы эффект "старения вод" не проявился, так как осадки, отлагавшиеся в пределах мелководного шельфа обогащены ¹³С по сравнению с осадками внутриокеанических поднятий [Coimbra et al., 2009]. Это может быть связано с рядом биотических и палеогеографических факторов, среди которых можно отметить: 1) существование свободной циркуляции вод между шельфом и открытым океаном, что согласуется с реконструкцией верхнеюрской карбонатной платформы в виде ступенчатого рампа; 2) повышенная биопродуктивность фотосинтезирующих организмов – сине-зеленых и зеленых водорослей, которые играют важнейшую породообразующую роль в верхнеюрских отложениях Крыма [Пискунов и др., 2012; Bucur et al., 2014].

ЗАКЛЮЧЕНИЕ

1. Верхнеюрские карбонатные отложения Байдарской котловины и плато Демерджи претерпели постседиментационные изменения, которые выразились в частичной перекристаллизации пород и незначительном нарушении Sr- и О-изотопных систем в известняках некоторых пачек. На основании литологических и изотопно-геохимических параметров (Mn/Sr, Fe/Sr, Mg/Ca и δ^{18} O) были выбраны наименее измененные образцы известняков, сохранившие первичные Sr- и С-изотопные метки среды седиментации. Несмотря на высокие концентрации Fe и Mn в аптихах, этот вид фоссилий сохранил схожие с белемнитами значения ⁸⁷Sr/⁸⁶Sr и может быть успешно использован для реконструкции изотопного состава Sr в морской воле.

2. Установленные в верхнеюрских известняках значения величины δ^{18} О зависят от фациальных условий их формирования. Мелководные осадки внутренней части и бровки карбонатного шельфа несколько обогащены легким изотопом ¹⁶О (δ^{18} О от –2.9 до +0.1‰), по сравнению с относительно глубоководными отложениями сублиторали, внешней части шельфа и верхней части склона (δ^{18} О от –0.5 до +1.3‰) Крымской карбонатной платформы.

3. В результате Sr-хемостратиграфической корреляции уточнен возраст и проведена региональная корреляция палеонтологически немых карбонатных комплексов Байдарской котловины. Изученные в трех разрезах массивные и слоистые известняки, слагающие обрывы западной части Ай-Петринской яйлы и Байдарскую яйлу, начали формироваться не позднее середины кимериджа, и относятся нами к кимериджу – началу титона. Таким образом, установлен кимеридж-титонский возраст известняков, слагающих южные обрывы яйлы (яйлинская свита). Присутствие оксфордских отложений в составе известняков яйлинской свиты остается недоказанным. Sr-хемостратиграфическая характеристика белемнитов и аптихов из флишоидов Байдарской котловины позволяет относить их к интервалу зон Microcanthum–Jacobi, что согласуется с биостратиграфическими данными. Формирование известняковых брекчий Байдарской котловины и плато Демерджи происходило, вероятно, с позднего титона до начала валанжина. Основная фаза накопления известняковых брекчий, проявленная в разрезах Западного, Центрального и Восточного Крыма, пришлась на начало раннего мела (зона Jacobi).

4. Омоложение пород толщи I-b с северо-запада (разрез "Донгуз-Орун") на юго-восток – (разрезы

"Мердвен-Кая" и "Мшатка") при общем северо-западном падении верхнеюрской толщи позволяет предполагать надвиговую структуру известняков яйлы.

5. Установленная с помощью Sr-изотопной хемостратиграфии последовательность формирования отложений Крымской карбонатной платформы, вскрывающихся в южном борту Байдарской котловины и на плато Демерджи позволила выявить в тренд изменения δ^{13} С от кимериджа к берриасу. Значения δ^{13} С в кимеридж-титонских отложениях Крымской карбонатной платформы в среднем на 0.5–1‰ выше, чем в одновозрастных пелагических осадках других районов. Несмотря на эти различия, в изученных отложениях прослеживается глобальный тренд уменьшения значений δ^{13} С в позднеюрское время.

Авторы выражают благодарность сотрудникам лаборатории аналитических методов ГИН РАН, Ю.О. Гаврилову, а также анонимному рецензенту статьи за полезные рекомендации, позволившие улучшить рукопись.

Работа выполнена в рамках темы госзадания № 0135-2016-0004 Геологического института РАН и частично поддержана РФФИ (проекты № 15-35-50091 и № 15-05-08767).

СПИСОК ЛИТЕРАТУРЫ

Аркадьев В.В., Рогов М.А. Новые данные по биостратиграфии и аммонитам верхнего кимериджа и титона Горного Крыма // Стратиграфия. Геол. корреляция. 2006. Т. 14. № 2. С. 90–104.

Архипов И.В., Успенская Е.А., Цейслер В.М. О характере взаимоотношения нижнемеловых и верхнеюрских отложений в пределах юго-западной части Горного Крыма // Бюлл. МОИП. Отд. геологии. 1958. Т. 33. Вып. 5. С. 81–90.

Барабошкин Е.Ю., Янин Б.Т. Корреляция валанжинских отложений Юго-западного и Центрального Крыма // Очерки геологии Крыма // Тр. Крымского геол. научно-учебного центра им. проф. А.А. Богданова. Вып. 1. М.: Изд-во Геол. ф-та МГУ, 1997. С. 4–26.

Бискэ Ю.С. Надвиговая позднемезозойская тектоника юго-западной оконечности Горного Крыма // Вестник СПБГУ. Сер. 7. 1997. Вып. 2. № 14. С. 3–11.

Горохов И.М., Семихатов М.А., Баскаков А.В. и др. Изотопный состав стронция в карбонатных породах рифея, венда и нижнего кембрия Сибири // Страти-графия. Геол. корреляция. 1995. Т. 3. № 1. С. 3–33.

Гужиков А.Ю., Аркадьев В.В., Барабошкин и др., Новые седиментологические, био- и магнитостратиграфические данные по пограничному юрско-меловому интервалу Восточного Крыма (г. Феодосия) // Стратиграфия. Геол. корреляция. 2012. Т. 20. № 3. С. 35–71.

Кабанов П.Б. Микритизация частиц как фациальный индикатор в мелководно-морских карбонатных породах // Бюлл. МОИП. Отд. геол. 2000. Т. 75. Вып. 4. С. 39–48.

Кузнецов А.Б., Семихатов М.А., Маслов А.В. и др. Srи С-изотопная характеристика типового разреза верхнего рифея (Южный Урал): новые данные // Стратиграфия. Геол. корреляция. 2006. Т. 14. № 6. С. 25–53.

Кузнецов А.Б., Овчинникова Г.В., Семихатов М.А. и др. Sr изотопная характеристика и Pb-Pb возраст карбонатных пород саткинской свиты, нижнерифейская бурзянская серия Южного Урала // Стратиграфия. Геол. корреляция. 2008. Т. 16. № 2. С. 16–34.

Кузнецов А.Б., Семихатов М.А., Горохов И.М. Изотопный состав Sr в водах Мирового океана, окраинных и внутренних морей: возможности и ограничения Sr-изотопной хемостратиграфии // Стратиграфия. Геол. корреляция. 2012. Т. 20. № 6. С. 3–19.

Кузнецов А.Б., Семихатов М.А., Горохов И.М. Возможности стронциевой изотопной хемостратиграфии в решении проблем стратиграфии верхнего протерозоя (рифея и венда) // Стратиграфия. Геол. корреляция. 2014. Т. 22. № 6. С. 3–25.

Лысенко Н.И. Стратиграфия и тектоника титон-валанжинских отложений района Байдарской котловины в Крыму / Автореф. дисс. ... канд. геол.-мин. наук. Симферополь, 1964. 19 с.

Милеев В.С., Барабошкин Е.Ю., Розанов С.Б., Рогов М.А. Киммерийская и альпийская тектоника Горного Крыма // Бюлл. МОИП. Отд. геол. 2006. Т. 81. Вып. 3. С. 22–33.

Муратов М.В., Архипов И.В. Успенская Е.А. Стратиграфия, фации и формации юрских отложений // Бюлл. МОИП. Отд. геол. 1960. Т. 35. Вып. 1. С. 87–97.

Пермяков В.В., Пермякова М.Н., Чайковский Б.П. Новая схема стратиграфии юрских отложений Горного Крыма. Киев: Ин-т геол. наук, 1991. 36 с.

Пискунов В.К., Рудько С.В, Барабошкин Е.Ю. Условия формирования средне-верхнетитонских известняков плато Демерджи (Горный Крым) // Вестник МГУ. Сер. 4. Геология. 2012. № 5. С. 3–11.

Платонов Е.С., Рудько С.В. Обоснование зоны Calpionella подзоны alpina (нижний берриас) по комплексу кальпионеллид в известняковых брекчиях в Байдарской котловине Юго-Западного Крым // Юрская система России: проблемы стратиграфии и палеогеографии. VI Всерос. совещания (15–20 сентября 2015 г., Махачкала). Научные материалы. Махачкала: АЛЕФ, 2015. С. 216–217.

Рудько С.В., Кузнецов А.Б., Пискунов В.К. Стронциевая изотопная хемостратиграфия верхнеюрских карбонатных отложений плато Демерджи (Горный Крым) // Стратиграфия. Геол. корреляция. 2014. Т. 22. № 5. С. 52-65.

Успенская Е.А. Юрская система, верхний отдел // Геология СССР. Т. 8. Крым. Ч. 1. М.: Недра, 1969. С. 114–154.

Федорова А.А. Стратиграфическое значение фораминифер из пограничных карбонатных отложений юры и мела Байдарской долины (Юго-Западный Крым) // Стратиграфические и фациальные методы изучения фанерозоя. СПб.: Геол. фак-т СПбГУ, 2000. 37 с.

Швидкий А.В. Геологическое строение окрестностей бухты Мегало-Яло (Юго-Западный Крым) // Вестник СПбГУ. Сер. 7. 1999. Вып. 1. № 14. С. 81–84.

Bucur I.I., Granier B., Krajewski M. Calcareous algae, microbial structures and microproblematica from Upper Jurassic-lowermost Cretaceous limestones of southern Crimea // Acta Palaeontologica Romaniae. 2014. V. 10. \mathbb{N}_{2} 1–2. P. 61–86.

Coimbra R., Immenhauser A., Olóriz F. Matrix micrite δ^{13} C and δ^{18} O reveals synsedimentary marine lithification in Upper Jurassic Ammonitico Rosso limestones (Betic Cordillera, SE Spain) // Sediment. Geol. 2009. V. 219. No 1. P. 332–348.

Denison R.E., Koepnick R.B., Fletcher A. et al. Criteria for the retention of original seawater ⁸⁷Sr/⁸⁶Sr in ancient shelf limestones // Chem. Geol. 1994. V. 112. № 1/2. P. 131–143.

Donnadieu Y., Dromart G., Godderis Y. et al. Mechanism for brief glacial episodes in the Mesozoic greenhouse // Paleoceanography. 2011. V. 26. \mathbb{N}_{2} 3. P. 1–10. PA3212.

Dunham R.J. Classification of carbonate rocks according to depositional texture / Ed. W.E. Ham. Classification of carbonate rocks. Tulsa, 1962. P. 108–121.

Dzyuba O.S., Izokh O.P., Shurygin B.N. Carbon isotope excursions in Boreal Jurassic–Cretaceous boundary sections and their correlation potential // Palaeogeogr. Palaeoclimatol. Palaeoecol. 2013. V. 381–382. P. 33–46.

Embry A.F., Klovan J.E. A Late Devonian reef tract on northeastern Banks Island, NWT // Bulletin of Canadian Petroleum Geology. 1971. V. 19. № 4. P. 730–781.

Flügel E. Microfacies of carbonate rocks: analysis, interpretation and application. Second Edition. Berlin, Heidelberg: Springer-Verlag, 2010. 984 p.

Gradstein F.M., *Ogg J.G.*, *Schmitz M.*, *Ogg G*. The Geologic Time Scale 2012 2-Volume Set. Tokyo: Elsevier, Print Book, 2012. P. 1176.

Gischler E., Swart P.K., Lomando A.J. Stable isotopes of carbon and oxygen in modern sediments of carbonate platforms, barrier reefs, atolls, and ramps: patterns and implications // Perspectives in carbonate geology: A Tribute to the Career of Robert Nathan Ginsburg, IAS Spec. Publ. 41. 2009. P. 61–74.

Gröcke D.R., *Price G.D.*, *Ruffell A.H. et al.* Isotopic evidence for late Jurassic-Early Cretaceous climate change // Palaeogeogr. Palaeoclimatol. Palaeoecol. 2003. V. 202. № 1/2. P. 97–118.

Hudson J.D. Stable isotopes and limestone lithification // J. Geol. Soc. 1977. V. 133. № 6. P. 637–660.

Jenkyns H.C., Jones C.E., Gröcke D.R. et al. Chemostratigraphy of the Jurassic System: applications, limitations and implications for palaeoceanography // J. Geol Soc. 2002. V. 159. № 4. P. 351–378.

Jones C.E., Jenkyns H.C., Coe A.L., Hesselbo S.P. Strontium isotopes in Jurassic and Cretaceous seawater // Geochim. et Cosmochim. Acta. 1994. V. 58. № 14. P. 3061–3074.

Kakizaki Y., Weissert H., Hasegawa T. et al. Strontium and carbon isotope stratigraphy of the Late Jurassic shallow marine limestone in western Palaeo-Pacific, northwest Borneo // J. Asian Earth Sci. 2013. V. 73. P. 57–67.

Kennard J.M., James N.P. Thrombolites and stromatolites: two distinct types of microbial structures // Palaios. 1986. V. 1. \mathbb{N}_{2} 5. P. 492–503.

Kroopnick P.M. The distribution of 13 C of Σ CO² in the world oceans // Deep Sea Research Part A. Oceanographic Research Papers. 1985. V. 32. No 1. P. 57–84.

Krajewski M. Facies, microfacies and development of the Upper Jurassic-Lower Cretaceous of the Crimean carbonate platform from the Yalta and Ay-Petri massifs (Crimea Mountains, Southern Ukraine). Dissertation Monographs 217. Kraków: Wydawnictwa AGH, 2010. 253 p.

Krajewski M., Olszewska B. Foraminifera from the Late Jurassic and Early Cretaceous carbonate platform facies of the southern part of the Crimea Mountains, Southern Ukraine // Annales Societatis Geologorum Poloniae. 2007. V. 77. P. 291–311.

Kruta I., *Rouget I.*, *Landman N.H. et al.* Aptychi microstructure in Late Cretaceous Ancyloceratina (Ammonoidea) // Lethaia. 2009. V. 42. P. 312–321.

Leinfelder R., Schmid D.U., Nose M., Werner W. Jurassic reef patterns – the expression of a changing globe // SEPM Spec. Publ. Phanerozoic Reef Patterns. 2002. V. 72. P. 465–520.

McArthur J.M. Recent trends in strontium isotope stratigraphy // Terra Nova. 1994. V. 6. № 4. P. 331–358.

McArthur J.M., *Howarth R.J.*, *Bailey T.R.* Strontium isotope stratigraphy: LOWESS Version 3. Best-fit line to the marine Srisotope curve for 0 to 509 Ma and accompanying look-up table for deriving numerical age // J. Geol. 2001. V. 109. \mathbb{N} 2. P. 155–169.

McArthur J.M., Mutterlose J., Price G.D. et al. Belemnites of Valanginian, Hauterivian and Barremian age: Sr-isotope stratigraphy, composition (⁸⁷Sr/⁸⁶Sr, d¹³C, d¹⁸O,

Na, Sr, Mg), and palaeo-oceanography // Palaeogeogr. Palaeoclimatol. Palaeoecol. 2004. V. 202. P. 253–272.

Michalík J., Reháková D., Halásová E. et al. The Brodno section – a potential regional stratotype of the Jurassic/ Cretaceous boundary (Western Carpathians) // Geologica Carpathica. 2009. V. 60. № 3. P. 213–232.

Meijers M.J.M., Langereis C.G., van Hinsbergen D.J.J. et al. Jurassic–Cretaceous low paleolatitudes from the circum-Black Sea region (Crimea and Pontides) due to True Polar Wander // Earth Planet Sci. Lett. 2010. V. 296. P. 210–226.

Nunn E.V., Price G.D. Late Jurassic (Kimmeridgian– Tithonian) stable isotopes (δ^{18} O, δ^{13} C) and Mg/Ca ratios: new palaeoclimate data from Helmsdale, northeast Scotland // Palaeogeogr. Palaeoclimatol. Palaeoecol. 2010. V. 292. P. 325–335.

Okay A.I., *Nikishin A.M.* Tectonic evolution of the southern margin of Laurasia in the Black Sea region // Int.l Geol. Rev. 2015. V. 57. \mathbb{N} 5–8. P. 1051–1076.

Padden M., Weissert H., Funk H. et al. Late Jurassic lithological evolution and carbon-isotope stratigraphy of the western Tethys // Eclogae Geologicae Helvetiae. 2002. V. 95. № 3. P. 333–346.

Patterson W.P., Walter L.M. Depletion of ¹³C in seawater Σ C02 on modern carbonate platforms: Significance for the carbon isotopic record of carbonates // Geology. 1994. V. 22. No 10. P. 885–888.

Price G.D., Sellwood B.W. Palaeotemperatures indicated by Upper Jurassic (Kimmeridgian-Tithonian) fossils from Mallorca determined by oxygen isotope composition // Palaeogeogr. Palaeoclimatol. Palaeoecol. 1994. V. 110. P. 1–10. *Raven J.A., Falkowski P.G.* Oceanic sinks for atmospheric CO2 // Plant, Cell & Environment. 1999. V. 22. № 6. P. 741–755.

Schneider S., Fursich F.T., Werner W. Sr-isotope stratigraphy of the Upper Jurassic of central Portugal (Lusitanian Basin) based on oyster shells // International J. of Earth Sciences. 2009. V. 98. № 8. P. 1949–1970.

Stanley S.M., Hardie L.A. Hypercalcification: paleontology links plate tectonics and geochemistry to sedimentology // GSA Today. 1999. V. 9. \mathbb{N} 2. P. 1–7.

Tucker M.E., *Wright V.P.* Carbonate Sedimentology. Oxford: Blackwell Science, 1990. 482 p.

Veizer J., Ala D., Azmy K. et al. 87 Sr/ 86 Sr, δ^{13} C and δ^{18} O evolution of Phanerozoic seawater // Chem. Geol. 1999. V. 161. No 1/3. P. 59–88.

Wierzbowski H., Rogov M.A., Matyja B.A. et al. Middle– Upper Jurassic (Upper Callovian–Lower Kimmeridgian) stable isotope and elemental records of the Russian Platform: Indices of oceanographic and climatic changes // Global and Planetary Change. 2013. V. 107. P. 196–212.

Žák K., Richter D.K., Filippi M. et al. Coarsely crystalline cryogenic cave carbonate – a new archive to estimate the Last Glacial minimum permafrost depth in Central Europe // Climate of the Past. 2012. V. 8. P. 1821–1837.

Zonenshain L.P., Le Pichon X. Deep basins of the Black Sea and Caspian Sea as remnants of Mesozoic backarc basins / Eds J. Aubouin, X. Le Pichon, A.S. Monin. Evolution of the Tethys // Tectonophysics. 1986. V. 123. N_{0} 1–4. P. 181–211.